Mirror Symmetry on Arbitrary Dimensional Calabi-Yau Manifold with a few moduli
نویسنده
چکیده
We calculate the B-model on the mirror pair of X2N−2(2, 2, · · · , 2, 1, 1) , which is an (N − 2)-dimensional Calabi-Yau manifold and has two marginal operators i.e. h(X2N−2(2, 2, · · · , 2, 1, 1)) = 2. In [1] we have discussed about mirror symmetry on XN (1, 1, · · · , 1) and its mirror pair. However, XN (1, 1, · · · , 1) had only one moduli. In this paper we extend its methods to the case with a few moduli using toric geometry.
منابع مشابه
The Geometry Underlying Mirror Symmetry
The recent result of Strominger, Yau and Zaslow relating mirror symmetry to the quantum field theory notion of T-duality is reinterpreted as providing a way of geometrically characterizing which Calabi–Yau manifolds have mirror partners. The geometric description—that one Calabi–Yau manifold should serve as a compactified, complexified moduli space for special Lagrangian tori on the other Calab...
متن کاملGeometric Aspects of Mirror Symmetry (with SYZ for Rigid CY manifolds)
In this article we discuss the geometry of moduli spaces of (1) flat bundles over special Lagrangian submanifolds and (2) deformed HermitianYang-Mills bundles over complex submanifolds in Calabi-Yau manifolds. These moduli spaces reflect the geometry of the Calabi-Yau itself like a mirror. Strominger, Yau and Zaslow conjecture that the mirror CalabiYau manifold is such a moduli space and they a...
متن کاملMirror Symmetry, Mirror Map and Applications to Calabi-Yau Hypersurfaces
Mirror Symmetry, Picard-Fuchs equations and instanton corrected Yukawa couplings are discussed within the framework of toric geometry. It allows to establish mirror symmetry of Calabi-Yau spaces for which the mirror manifold had been unavailable in previous constructions. Mirror maps and Yukawa couplings are explicitly given for several examples with two and three moduli.
متن کاملGeneralized Calabi - Yau Manifolds and the Mirror of a Rigid Manifold
The Z manifold is a Calabi–Yau manifold with b 21 = 0. At first sight it seems to provide a counter example to the mirror hypothesis since its mirror would have b 11 = 0 and hence could not be Kähler. However by identifying the Z manifold with the Gepner model 1 9 we are able to ascribe a geometrical interpretation to the mirror, ˜ Z, as a certain seven-dimensional manifold. The mirror manifold...
متن کاملMirror Symmetry for hyperkähler manifolds
We prove the Mirror Conjecture for Calabi-Yau manifolds equipped with a holomorphic symplectic form, also known as complex manifolds of hyperkähler type. We obtain that a complex manifold of hyperkähler type is mirror dual to itself. The Mirror Conjecture is stated (following Kontsevich, ICM talk) as the equivalence of certain algebraic structures related to variations of Hodge structures. We c...
متن کامل